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A three-dimensional shell theory is presented which is applicable to doubly curved thick
open shells which are arbitrarily deep (have a large side-length to radius of curvature ratio)
in one principal direction but are shallow in the other direction. The strain}displacement
equations for the proposed &&deep-shallow'' shell theory are expressed in Cartesian
co-ordinates and the limits of applicability of these equations are discussed. These equations
are then used in a Ritz variational formulation with algebraic polynomials as trial functions
to solve for the natural frequencies of a number of doubly curved shell problems. A novel
approach is also proposed in which penalty functions are introduced to enforce continuity of
displacements at two opposite ends of a shell of rectangular platform, increasing the range of
problems which can be treated to include closed shells, such as cylinders, barrels,
cooling-tower-type structures, toroids, rings, etc. (a sub-class of shells of revolution).
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1. INTRODUCTION

Marguerre [1], Reissner [2}4] and Vlasov [5] are credited with the initial development of
shallow shell theory (see Leissa [6]). Work on the free vibration of shallow shells has been
discussed in a monograph on the vibration of shells by Leissa [6], in a book by Soedel [7],
as well as in a more recent review article by Qatu [8]. The free vibration behaviour of deep
cylindrical shell panels based on the deep shell theory of Novozilov [9] has been studied by
Mizusawa [10] using the thin strip method. Lee et al. [11] compared results obtained using
a deep shell theory with results obtained using shallow shell theory for cantilevered
cylindrically curved panels. The free vibration of thin closed cylindrical shells has been
extensively studied and is reviewed in a paper by Koga [12] as well as in Leissa's
monograph [6]. The free vibration of laminated barrel shells has been treated in a recently
published paper by Qatu [13] where extensive numerical results are presented.

In the present paper, a three-dimensional shell theory applicable to a class of doubly
curved thick open shells which are arbitrarily deep (have a large side-length to radius of
curvature ratio) in one principal direction but which are shallow in the other direction is
proposed. The strain}displacement equations of this &&deep-shallow'' shell theory are
expressed in Cartesian co-ordinates. Simple algebraic polynomials which satisfy the
boundary conditions on the six faces of a parallelepiped are used as trial functions in a Ritz
approach to obtain an eigenvalue equation based on the proposed strain}displacement
equations. (The use of simple polynomials as admissible functions in a Ritz approach
to treat plates, shells and solids has been discussed in a number of previous papers
[14}16].
0022-460X/00/470257#13 $35.00/0 ( 2000 Academic Press
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A novel technique is also proposed in which penalty functions are introduced to enforce
continuity of displacements at two opposite ends of a shell of rectangular platform (rather
than to enforce boundary conditions [17] or continuity between elements [18]). This simple
device increases the range of problems which can be treated using the &&deep}shallow'' shell
equations to closed shells, such as cylinders, barrels, co oling-tower-type structures, toroids,
rings, etc. (a sub-class of shells of revolution).

In order to validate the proposed approach, as well as to explore the limits of
applicability, natural frequencies are obtained for a range of problems including
cylindrically curved panels, thick and thin cylindrical shells and barrel shells and are
compared, where possible, with values published in the open literature.

2. THEORY

2.1. STRAIN}DISPLACEMENT EQUATIONS

Consider a homogeneous isotropic shell described in orthogonal curvilinear co-ordinates
a
1
, a

2
lying along the neutral surface and a co-ordinate a

3
normal to the neutral surface as

shown in Figure 1. If it is assumed that the principal curvatures R
1

and R
2

are constant and
lie along the co-ordinates a

1
and a

2
, the three-dimensional linear strain}displacement

equations are given by (cf. Soedel [7, pp. 25}26] and Leissa [6, p. 7])
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where e
11

, e
22

, e
33

are the normal strains, e
12

, e
13

and e
23

the shear strains, and ;
1
, ;

2
and

;
3

the displacements in the a
1
, a

2
and a

3
directions, respectively, and where A

1
and A

2
are

the "rst fundamental quantities or LameH parameters.
The strain}displacement equations given by equation (1) can be simpli"ed if it is further

assumed that: (i) ¹he ratios of thickness a
3

to radius of curvature are small, that is a
3
/R

1
and

a
3
/R

2
@1. It can then be assumed that 1#a

3
/R

1
and 1#a

3
/R

2
in equations (1) are

approximately equal to 1. (ii) Either the ratio of sidelength to radius of curvature a
1
/R

1
or

a
2
/R

2
is small (@1), or in other words the shell is shallow in either the a

1
or a

2
direction (in

the following analysis it will be assumed that a
2
/R

2
@1). The shell can then be

approximately described in Cartesian co-ordinates by letting x"R
1

dh"a
1
, y"a

2
,

z"a
3
, R

x
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1
and R

y
"R

2
from which sidelengths a"R

1
, h"a

1
, b"2R

2
sin(//2):a

2
and thickness c"a

3
and the LameH parameters A

1
and A

2
are equal to 1 as shown in Figure 2.



Figure 1. Doubly curved shell in orthogonal curvilinear co-ordinates.

Figure 2. Cartesian representation of doubly curved shell.
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The strain}displacement equations can be expressed in terms of the displacements u,
v and w in the x, y and z Cartesian co-ordinates, respectively, as
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The shell is e!ectively &&unwrapped'' or &&unravelled'' in the deep direction as shown in
Figure 2 (instead of using the more typical projection onto the x}y plane used in shallow
shell theory). This very simple technique extends the applicability of the
strain}displacement equations (2) to shells which are arbitrarily deep in one direction. In
fact, shells may even be wrapped end to end (h"2P; a"2PR

x
) or coiled (h'2P;

a'2PR
x
) (although for coiled shells the interference of one surface on another is not taken



Figure 3. (a) Closed barrel shell (constant positive meridional curvature R
y
); (b) closed cooling tower-shaped

shell (constant negative meridional curvature R
y
).
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into account). It should be noted that the same approach can be used to extend the
applicability of classical thin-shallow shell theory to deep}shallow shells (all that is needed
is a correction in the sidelength used for the &&deeper'' direction).

Shells of revolution can be modelled in Cartesian co-ordinates by using the unwrapped
planform (a"2PR

x
) and by enforcing continuity at x"0 and a. However, for these shells

the radius of curvature R
x

will not, in general, be constant but will vary along the axial
length b as is shown in Figure 3 (except for the special case of a cylinder where 1/R

y
"0). It

can be shown that, in addition to the previously stated assumptions, the proposed equations
will only apply for closed shells provided b2/(8R

x
R

y
)@1 (see Appendix A).

It should be noted that: (i) If a/R
x

and b/R
y
"0 the strain}displacement equations (2)

reduce to the three-dimensional elasticity equations for a solid in Cartesian co-ordinates
and are valid for arbitrary thickness c; and (ii) if one of the curvatures is in"nite (e.g.,
b/R

y
"0), that is if the shell is cylindrically curved, then the only limitation of the proposed

equations is that c/R
x
@1.

2.2. FREE VIBRATIONS USING RITZ APPROACH

If simple harmonic motion at radian natural frequency u is assumed, the displacements u,
v and w in the x, y and z directions, respectively, can be expressed as u(x, y, z, t)"
;(x, y, z) sinut; v(x, y, z, t)"<(x, y, z) sinut and w (x, y, z, t)"=(x, y, z) sin ut. The
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displacements ;, < and= for a thick shell of rectangular planform can be approximated
using algebraic polynomials as follows:
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where A
ijk

, B
ijk

and C
ijk

are as yet undetermined linear coe$cients. The index lu
x/0

depends
on the geometric boundary conditions on the surface x"0 for the ; displacement and
takes the value 0 for no restraint (;O0) and 1 for full restraint (;"0). Similarly, indices
lV
x/0

and lW
x/0

depend upon the restraints imposed upon < and= in the x"0 plane and
indices (lU
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) depend on the restraints in the;,< and= directions on the other "ve faces
of the solid shell (at x"a, y"0, y"b, z"0 and z"c).

The maximum strain energy <
max

can be expressed straightforwardly in terms of the
normal and shear strains:
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where j"lE/(1#l)(1!2l) and G"E/2(1#v) are the LameH parameters.
By substituting equations (2) into equation (4), <

max
can be expressed in terms of the

displacements integrated over the volume of the solid.
The maximum kinetic energy ¹

max
can also be expressed in terms of the displacements as

¹
max

"A
ou2

2 B PPP (;2#<2#=2) dx dy dz, (5)

where o is the density of the element material and the integration is again performed over
the volume of the solid.

Finally, the trial function series (3) are substituted for ;, < and = in the maximum
kinetic and strain energy expressions and the Lagrangian functional ¸

max
"(¹

max
!<

max
) is

minimized with respect to the undetermined linear coe$cients A
ijk

, B
ijk

and C
ijk

to give
a homogeneous linear system of equations. Eigenvalues and the corresponding eigenvectors
can then be obtained by a number of methods (in the present paper using subspace
iteration). It should be noted that since the polynomial trial function series described by
equations (3) form a mathematically complete set of functions, the results obtained from the
Ritz minimization process will converge monotonically from above to the exact frequencies
(of the approximated problem) as the number of terms in each series tends to in"nity.

2.3. ENFORCEMENT OF CONTINUITY CONDITIONS TO MODEL SHELLS OF REVOLUTION

The approach described above can be used to treat cylindrically shaped closed shells by
creating a "ctitious seam or cut in the shell along the axial length. The shell can then be
unwraped into the Cartesian co-ordinate system so long as continuity of geometric
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boundary conditions along the cut edge is ensured. For a closed cylindrical shell with axial
co-ordinate in the y direction and with x"2PR

x
"a, these continuity conditions are given

by ;
x/0

";
x/a

, <
x/0

"<
x/a

and =
x/0

"=
x/a

. In the present paper, the continuity
conditions are satis"ed by using connecting springs of very high sti!ness value K

U
, K

V
and

K
W

to enforce continuity of displacements ;, <, and= at x"0 and a. The strain energy
contribution<

U
,<

V
and<

W
of these springs is then simply added to the strain energy<
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of
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<
u
"

1

2
K

u PP (;
x/0

!;
x/a

)2 dy dz,

<
v
"

1

2
K

v PP (<
x/0

!<
x/a

)2 dy dz, (6)

<
w
"

1

2
K

w PP (=
x/0

!=
x/a

)2 dy dz.

The use of penalty functions or arti"cial springs to enforce continuity could usefully be
applied even when cylindircal co-ordinates are used (for example, polynomial functions
could be used instead of the more usual Fourier series). In general, the technique of using
arti"cial springs to enforce continuity of geometric, and if required, natural boundary
conditions at two points along a non-periodic function, extends the range of functions
which can be used as trial functions in a number of problems.

3. NUMERICAL RESULTS

In order to validate the proposed approach as well as to explore the limits of
applicability, numerical results have been generated for a range of problems and are
compared with results published in the open literature or with results generated by the
author using the "nite element method. For all cases considered, Poisson's ratio was taken
as 0)3.

In Table 1, the lowest "ve frequency parameters X"uI(o/E) as obtained using the
present approach are given for a fully simply supported cylindrical panel for c/R

x
"0)01,

b/R
x
"0)52356 and for a/R

x
ranging from 0)2618 (h"153) to 2)0942 (h"1203).

Comparison results obtained by Mizusawa [10] using a spline strip approach in a deep thin
shell theory based on the equations proposed by Novozhilov [9] are also given. For the
cases considered here, the only assumptions made in using the present approach are (i) that
the planform can be approximated as a parallepiped (rather than actual truncated wedge)
and (ii) that the radius of curvature R

x
is constant through the thickness c of the panel (both

of which are very closely approximated since the shell is thin). Agreement between the
present results and those obtained by Mizusawa can be seen to be excellent with at most
a 1)3% di!erence in the results for all cases except for h"1203 where at most a 5%
discrepancy is observed. From the brief convergence study given, the present results can be
seen to converge rapidly and in many cases to 4 signi"cant "gures. It might also be noted
that in all cases but one (Mode 4, 903), the present results are lower than those obtained by
Mizusawa and are therefore more accurate as the Ritz approach leads to upper bounds on
the natural frequencies (the author believes the results obtained for the 1203 case by
Mizusawa would converge closer to the present results if a larger number of strips were used
in the solution).



TABLE 1

Frequency parameters X"uI(o/E) for a fully supported cylindrical panel for b/R
x
"0)52356,

c/R
x
"0)01, and R

y
/R

x
"0

Mode number

a/R
x

h n
x
]n

y
]n

z
1 2 3 4 5

0)2618 153 8]8]4 0)3002 0)5214 0)8178 0)9575 1)129
10]10]4 0)3002 0)5214 0)8177 0)9574 1)129

Mizusawa [10] 0)3009 0)5233 0)8232 0)9675 1)143

0)5236 303 8]8]4 0)2821 0)3003 0)5043 0)5214 1)5669
10]10]4 0)2821 0)3002 0)5043 0)5214 1)5667

Mizusawa [10] 0)2821 0)3009 0)5050 0)5233 1)5701

0)7853 453 8]8]4 0)2432 0)3005 0)3674 0)4868 0)4912
10]10]4 0)2432 0)3002 0)3674 0)4632 0)4868

Mizusawa [10] 0)2433 0)3010 0)3674 0)4645 0)4877

1)5707 903 10]10]4 0)2437 0)2556 0)2821 0)3128 0)3674
12]6]4 0)2432 0)2531 0)2821 0)3067 0)3674

Mizusawa [10] 0)2443 0)2552 0)2825 0)3042 0)3675

2)0942 1203 10]10]4 0)2425 0)2481 0)2619 0)2821 0)3013
12]6]4 0)2425 0)2481 0)2619 0)2821 0)3003

Mizusawa [10] 0)2452 0)2492 0)2682 0)2826 0)3148

TABLE 2

Frequency parameters X*"ua2I(12(1!l2)o/(Ec2)) for a cylindrical panel cantilevered at
y"0 with b/a"1, R

y
/R

x
"R

Symmetric modes Antisymmetric modes

a/R
x

a/c S1 S2 S3 S4 A1 A2 A3 A4

0)7 40 Present 8]8]4 11)24 26)20 40)33 63)30 9)097 34)86 61)33 77)36
Deep [11] 11)24 26)29 40)64 63)55 9)150 35)09 61)88 79)49

Shallow [11] 10)81 27)35 40)45 64)11 9)219 35)11 64)69 79)61

1)6 40 Present 8]8]4 17)73 33)63 47)14 88)59 12)55 45)35 51)03 86)92
Deep [11] 17)91 33)47 47)69 89)74 12)63 45)64 51)61 87)33

Shallow [11] 18)69 31)96 49)55 97)12 11)42 46)22 64)96 87)24

0)7 500 Present 8]8]4 30)26 93)48 122)2 161)6 35)70 82)10 93)02 170)9
Deep [11] 30)29 93)60 122)3 161)9 35)74 82)22 93)15 174)9

Shallow [11] 30)34 93)62 127)1 156)5 35)42 82)55 93)22 174)9

1)6 500 Present 8]8]4 49)92 124)2 133)9 225)5 47)33 132)2 158)1 182)0
Deep [11] 49)98 124)4 134)0 225)4 47)36 131)8 157)3 182)3

Shallow [11] 46)92 129)6 140)6 241)7 49)43 131)9 145)8 206)9
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In Table 2, the frequency parameters X*"ua2I(12(1!l2)o/(Ec2)) for the "rst four
symmetric and antisymmetric modes of a cylindrical panel cantilevered at y"0 as obtained
using the present approach for both a very thin c/a"1/500 and a thin c/a"1/40 panel and
for both a relatively shallow a/R

x
"0)7 and a deeper a/R

x
"1)6 curved panel (all

combinations for a total of four cases) are compared with results published by Lee et al.
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[11]. Again, for the cases considered, here, the only simplifying assumptions made in the
present approach are (i) parallepiped platform and (ii) a constant radius of curvature R

x
(again these are both very closely approximated since the shell is for all cases relatively thin).
Lee et al. generated results using both a shallow-shell theory and a deep-shell theory and, as
can be seen from Table 2, agreement of the present results with their published deep-shell
theory based results is excellent with at most a 2)7% discrepancy. Again it should be noted
that in the vast majority of cases, the present results are lower than those presented by Lee
et al. and can therefore be considered more accurate.

In Table 3, the lowest seven non-dimensional frequency parameters X"uR
x
I(o/E) for

axial wave number 1 are given for a cylinder of thickness to radius ratio c/R
x
"0)3 and

thickness to length ratio c/b"0)3 with shear diaphragm boundary conditions on each end
as obtained by modelling: (i) a quarter of the cylinder as a 903 shell panel and applying all
distinct combinations of symmetry and antisymmetry conditions at x"0 and at x"P/2
R

x
"a; (ii) half the cylinder as a 1803 shell panel applying all combinations of symmetry and

antisymmetry conditions at x"0 and at x"PR
x
"a; (iii) a full cylinder ensuring

continuity of displacements at x"0 and at x"2 PR
x
"a by using arti"cial springs

(penalty functions) with sti!ness parameters K@
U
"K

U
/E, K

V
"K@

V
/E and K@

W
"K

W
/E

equal to 106. For the full cylinder case and for 12]4]4 terms in the series a brief con-
vergence study for penalty function sti!ness K@

U
"K@

V
"K@

W
"102 and 104 is also included

in the table. The present approach assumes (i) that the radius of curvature R
x
"1 is

constant through the thickness c whereas R
x

actually varies from 0)85 to 1)15 as shown in
Figure 4(a) and (ii) that the unravelled planform of the cylinder is a parellelepiped, rather
than a truncated wedge, as shown in Figure 4(b). In spite of these assumptions, excellent
agreement is achieved with the results obtained by Armenakas et al. [20] using an exact
solution (at most 1)5% di!erence in predicted non-dimensional frequency). As the
circumferential wave number of a mode increases, more terms in the polynomial expansion
in the circumferential direction are required to achieve convergence using the present
approach particularly when symmetry is not exploited and the full shell is modelled.
TABLE 3

Frequency parameters X"uR
x
I(o/E) for a cylindrical shell with shear diaphragm conditions

at both ends of c/R
x
"0)3 and b/R

x
"1

Mode type (axial wave number, circumferential wave number)

n
x
]n

y
]n

z
(1, 2) (1, 1) (1, 0) (1, 3) (1, 4) TORS (1, 1) (1, 5)

903 6]6]3 1)173 1)185 1)247 1)353 1)711 1)948 2)094 2)176
9]9]6 1)162 1)179 1)242 1)333 1)673 1)948 2)094 2)120

1803 8]8]5 1)162 1)179 1)242 1)333 1)714 1)948 2)094 2)223
12]4]4 1)162 1)179 1)242 1)333 1)674 1)948 2)094 t

n
x
]n

y
]n

z
K@

u
, K@

v
, K@

w3603 12]4]4 102 1)162 1)179 1)241 1)338 1)918 1)947 2)085 t

104 1)162 1)179 1)242 1)341 1)923 1)948 2)093 t

106 1)162 1)179 1)242 1)341 1)923 1)948 2)094 t

14]4]4 106 1)162 1)179 1)242 1)334 1)715 1)948 2)094 t

Exact [20] 1)161 1)173 1)232 1)340 1)690 1)948 2)085 2)146A

%Errors 0)1 0)5 0)8 !0)5 !1)0 0)0 0)4 !1)2

s%Error"100](9]9]6 result 903!exact)/exact.
tNumerical problems experienced.
AResults obtained by Soldatos et al. [19].



Figure 4. (a) Cylindrical shell of radius R
x
"1, axial length b"1 and thickness c"0)3; (b) cylindrical shell of

Figure 4(a) unravelled into Cartesian co-ordinates showing approximated parallelepiped cross-section used
overlaid on actual truncated wedge cross-section.
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In Table 4, the lowest "ve non-dimensional frequency parameters X"uR
x
I(o/E) for

a fully simply supported closed cylindrical shell with a non-dimensional thickness to radius
of curvature ratio c/R

x
ranging from 0)1 to 1)0, and a length to radius of curvature ratio

b/R
x
"1 are compared with the exact results obtained by Amenakas et al. [20]. As can be

seen in Table 4, agreement between the approximate and exact results becomes poorer as
the shell becomes thicker. However, it is still remarkably good even for very thick shells (e.g.,
c/R

x
"1) where the simplifying assumptions ((i) planform approximated as a parellepiped,

and (ii) R
x

constant through thickness) of the present approach become signi"cant.
In Table 5, the lowest "ve non-dimensional frequency parameters X"uR

x
I(o/E) are

given for thin (c/R
x
"0)01) doubly curved closed shells similar to those shown in Figure 3(a)

and 3(b), with axial length to radius of curvature ratio b/R
x
"5, and for R

y
/R

x
"R

(cylinder), R
y
/R

x
"40, 20 and 10 (increasingly &&barrelled'' shells as shown in Figure 3(a))

and R
y
/R

x
"!40, !20 and !10 (increasingly &&cooling tower'' shaped shells as shown in

Figure 3(b)). For all cases considered the shell is clamped at both ends. Results obtained
using the present approach are compared with very accurate values obtained using the
commercial "nite element software package ANSYS 5.3 [21]. The most signi"cant
assumption made using the present approach is that the curvature R

x
is constant along the

axial length whereas, as is shown in Appendix A, it is in actual fact a function of R
y
(except

for the special case of the cylinder). A second, less signi"cant, assumption is that the
unravelled planform of the doubly curved shell is rectangular in planform (with side-length
ratios b/R

x
"5 and a/R

x
"2P). Very good agreement is obtained between the present

results and the comparison based on an accurate three-dimensional "nite element model of
the problem (i.e., without the assumptions made in the present approach). As might be
expected, as the shell becomes more curved along its axial length, and therefore deviates
more signi"cantly from the actual problem, the discrepancy between numerical results
obtained using the present approach and the "nite element results becomes larger.

4. CONCLUDING REMARKS

Natural frequencies using the proposed strain}displacement equations for
&&deep-shallow'' shells have been shown to give remarkably accurate results when compared
with values available in the open literature. It should again be stressed that although the full
three-dimensional strain}displacement equations were derived, these could be further
simpli"ed for thin shells by introducing the usual Love}Kircho! approximations to give
a deep}shallow thin shell theory.



TABLE 4

Frequency parameters X"uR
x
I(o/E) for cylindrical shells with shear diaphragm conditions at both ends, with b/R

x
"1, and c/R

x
varying from

0)1 to 1

c/R
x

n
x
]n

y
]n

z
MODE type (axial wave number, circumferential wave number) %Error

0)1 (1, 3) (1, 2) (1, 1) (1, 4) (1, 5) (1, 0) (1, ?) (1, ?) t s

8]8]5 0)7121s 0)7758 0)9332 0)7900 0)9845 1)033 1)258 1)590 / 0)3
Exact [20] 0)7098 0)7739 0)9317 0)7880 0)9842A 1)031 / /

0)2 (1, 2) (1, 1) (1, 3) (1, 0) (1, 4) (1, 5) TORS (1, 1) t s

8]8]5 0)9689 1)047 1)051 1)127s 1)303 1)670t 1)948 2)088 0)5 0)5
Exact [20] 0)9656 1)043 1)050 1)121 1)306 1)679A 1)948 2)084

0)3 (1, 2) (1, 1) (1, 0) (1, 3) (1, 4) TORS (1, 1) (1, 5)
8]8]5 1)162 1)179 1)242s 1)333 1)673 1)948 2)094 2)120t 1)2 0)8

Exact [20] 1)161 1)173 1)232 1)340 1)690 1)948B 2)085 2)146A

0)4 (1, 1) (1, 2) (1, 0) (1, 3) (1, 4) TORS (1, 1) (1, 2) t s

8]8]5 1)300 1)320 1)355 1)539t 1)922 1)948 2)102 2)423s 1)2 1)4
Exact [20] 1)303 1)325 1)341 1)558 1)957 1)948 2)087 2)390

0)5 (1, 1) (1, 2) (1, 0) (1, 3) TORS (1, 4) (1, 1) (1, 2) t s

8]8]5 1)402 1)455 1)441 1)686 1)948 2)090t 2)112 2)441s 2)5 2)0
Exact [20] 1)398 1)439 1)454 1)719 1)948B 2)143 2)090 2)393

0)7 (1, 1) (1, 2) (1, 0) (1, 3) TORS (1, 1) (1, 4) (1, 2) t s

8]8]5 1)548 1)600 1)611 1)865 1)948 2)134 2)284 2)477s 3)6 3)2
Exact [20] 1)552 1)631 1)591 1)925 1)948B 2)095 2)360 2)392

0)9 (1, 1) (1, 2) (1, 0) (1, 3) TORS (1, 1) (1, 2) (1, 4) t s

7]7]7 1)638 1)692 1)718 1)961t 1)948 2)154s 2)383 2)501 3)7 2)7
Exact [20] 1)651 1)739 1)698 2)036 1)948B 2)097 2)379 2)433

1)0 (1, 1) (1, 2) (1, 0) TORS (1, 3) (1, 1) (1, 2) (1, 4) t s

7]7]7 1)669 1)723 1)757 1)948 1)993t 2)160s 2)415 2)502 3)5 3)0
Exact [20] 1)687 1)776 1)738 1)948A 2)066 2)097 2)368 2)430

sMax positive error"100](present!exact)/exact.
tMax negative error"100](exact!present)/exact.
AResults obtained by Soldatos et al. [19].
BResults obtained by the author.
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TABLE 5

Frequency parameters X"uR
x
I(o/E) for closed barrel shells clamped at both ends with c/R

x
"0)01 and b/R

x
"5

%DR
x
/R

x
:

R
y
/R

x
b2/(8R

x
R

y
)]100 MODE type (axial wave number, circumferential wave number) % di!erence

R 0% n
x
]n

y
]n

z
(1, 4) (1, 5) (1, 3) (1, 6) (2, 5) ! #

6]6]3 0)0681 0)0818 0)0842 0)186 0)130
8]8]5 0)0664 0)0796 0)0810 0)109 0)113

8]14]3s 0)0659 0)0795 0)0800 0)109 0)112 0)9 0)0
FEt 0)0661 0)0799 0)0801 0)110 0)113

40 8% n
x
]n

y
]n

z
(1, 4) (1, 3) (1, 5) (1, 6) (2, 5) ! #

6]6]3 0)0792 0)0918 0)0937 0)123 0)129
8]8]5 0)0776 0)0876 0)0926 0)114 0)126

8]14]3s 0)0707 0)0874 0)0915 0)113 0)125 6)2 4)4
FEt 0)0751 0)0867 0)0875 0)113 0)124

!40 8% n
x
]n

y
]n

z
(1, 4) (1, 5) (1, 3) (2, 5) (1, 6) ! #

6]6]3 0)0638 0)0749 0)0828 0)107 0)118
8]8]5 0)0620 0)0742 0)0782 0)103 0)109

8]14]3s 0)0617 0)0742 0)0782 0)103 0)108 4)2 1)9
FEt 0)0630 0)0773 0)0777 0)103 0)106

20 16% n
x
]n

y
]n

z
(1, 4) (1, 3) (1, 5) (1, 6) (2, 5) ! #

6]6]3 0)0948 0)104 0)109 0)132 0)144
8]8]5 0)0933 0)101 0)108 0)123 0)141

8]14]3s 0)0927 0)100 0)107 0)123 0)140 2)4 5)6
FEt 0)0893 0)0985 0)101 0)126 0)138

!20 16% n
x
]n

y
]n

z
(1, 4) (1, 3) (1, 5) (2, 5) (2, 4) ! #

6]6]3 0)0673 0)0740 0)0878 0)102 0)108
8]8]5 0)0656 0)0736 0)0834 0)0975 0)106

8]14]3s 0)0655 0)0730 0)0834 0)0971 0)106 10)0 1)4
FEt 0)0674 0)0803 0)0822 0)0975 0)110

10 32% n
x
]n

y
]n

z
(1, 4) (1, 3) (1, 5) (1, 2) (1, 6) ! #

6]6]3 0)133 0)139 0)145 0)160 0)184
8]8]5 0)132 0)136 0)144 0)153 0)179

8]14]3s 0)131 0)136 0)143 0)152 0)180 0)0 14)4
FEt 0)124 0)128 0)134 0)152 0)154

!10 32% n
x
]n

y
]n

z
(1, 4) (1, 3) (1, 5) (2, 5) (2, 4) ! #

6]6]3 0)0906 0)0891 0)104 0)109 0)100
8]8]5 0)0891 0)0889 0)0996 0)105 0)0986

8]14]3s 0)0890 0)0888 0)0994 0)105 0)0982 11)0 1)0
FEt 0)0908 0)0983 0)100 0)104 0)109

sLowest values obtained using 14]8]3 or 8]14]3 terms. tFinite element results using 8000 brick elements.
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A technique for extending the range of problems which can be treated using the
&&deep-shallow'' strain displacement equations in a Ritz approach to closed shells by
enforcing continuity at the two connected ends of the shell was also proposed and the
applicability of this approach was demonstrated quite conclusively by comparing results
obtained with exact values for a hollow circular cylinder.
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Figure A1. Closed cooling tower-shaped shell (with constant negative meridional curvature R
y
).
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APPENDIX A

As is shown in Figure A1, a closed shell with constant meridional curvature R
y
will have

a radial curvature R
x

which is a function of the axial position (in Cartesian co-ordinates
a function of y).

To approximate R
x

as a constant it is necessary that DR
x
/R

x
@1.

Now from Figure A1,

DR
x
/R

x
"R

y
(1!cos(h))/R

x
and sin(h)"(b/2)/R

y
.

If h is assumed small (as is implied by the requirement b/R
y
@1, or in other words the

requirement that the shell is shallow in the y direction) then

h:sin(h)"b/(2Ry) and cos(h):1!h2/2"1!b2/(8R2
y
)

and DR
x
/R

x
can now be expressed in terms of the axial length b and the curvature R

x
and R

y
as DR

x
/R

x
:b2/(8R

y
R

x
)@1.
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